zunm2r function

void zunm2r(
  1. String SIDE,
  2. String TRANS,
  3. int M,
  4. int N,
  5. int K,
  6. Matrix<Complex> A_,
  7. int LDA,
  8. Array<Complex> TAU_,
  9. Matrix<Complex> C_,
  10. int LDC,
  11. Array<Complex> WORK_,
  12. Box<int> INFO,
)

Implementation

void zunm2r(
  final String SIDE,
  final String TRANS,
  final int M,
  final int N,
  final int K,
  final Matrix<Complex> A_,
  final int LDA,
  final Array<Complex> TAU_,
  final Matrix<Complex> C_,
  final int LDC,
  final Array<Complex> WORK_,
  final Box<int> INFO,
) {
  final A = A_.having(ld: LDA);
  final C = C_.having(ld: LDC);
  final TAU = TAU_.having();
  final WORK = WORK_.having();
  bool LEFT, NOTRAN;
  int I, I1, I2, I3, IC = 0, JC = 0, MI = 0, NI = 0, NQ;
  Complex AII, TAUI;

  // Test the input arguments

  INFO.value = 0;
  LEFT = lsame(SIDE, 'L');
  NOTRAN = lsame(TRANS, 'N');

  // NQ is the order of Q

  if (LEFT) {
    NQ = M;
  } else {
    NQ = N;
  }
  if (!LEFT && !lsame(SIDE, 'R')) {
    INFO.value = -1;
  } else if (!NOTRAN && !lsame(TRANS, 'C')) {
    INFO.value = -2;
  } else if (M < 0) {
    INFO.value = -3;
  } else if (N < 0) {
    INFO.value = -4;
  } else if (K < 0 || K > NQ) {
    INFO.value = -5;
  } else if (LDA < max(1, NQ)) {
    INFO.value = -7;
  } else if (LDC < max(1, M)) {
    INFO.value = -10;
  }
  if (INFO.value != 0) {
    xerbla('ZUNM2R', -INFO.value);
    return;
  }

  // Quick return if possible

  if (M == 0 || N == 0 || K == 0) return;

  if ((LEFT && !NOTRAN || !LEFT && NOTRAN)) {
    I1 = 1;
    I2 = K;
    I3 = 1;
  } else {
    I1 = K;
    I2 = 1;
    I3 = -1;
  }

  if (LEFT) {
    NI = N;
    JC = 1;
  } else {
    MI = M;
    IC = 1;
  }

  for (I = I1; I3 < 0 ? I >= I2 : I <= I2; I += I3) {
    if (LEFT) {
      // H(i) or H(i)**H is applied to C(i:m,1:n)

      MI = M - I + 1;
      IC = I;
    } else {
      // H(i) or H(i)**H is applied to C(1:m,i:n)

      NI = N - I + 1;
      JC = I;
    }

    // Apply H(i) or H(i)**H

    if (NOTRAN) {
      TAUI = TAU[I];
    } else {
      TAUI = TAU[I].conjugate();
    }
    AII = A[I][I];
    A[I][I] = Complex.one;
    zlarf(SIDE, MI, NI, A(I, I).asArray(), 1, TAUI, C(IC, JC), LDC, WORK);
    A[I][I] = AII;
  }
}