StandardScaler class
StandardScaler standardizes features by removing the mean and scaling to unit variance. Commonly used in machine learning preprocessing.
Constructors
Properties
Methods
-
fit(
List< List< data) → voiddouble> > - Computes the mean and standard deviation per feature (column).
-
inverseTransform(
List< List< data) → List<double> >List< double> > - Reverts standardized values back to original scale.
-
loadFromModel(
ScalerModel model) → void - Loads scaler from a model.
-
noSuchMethod(
Invocation invocation) → dynamic -
Invoked when a nonexistent method or property is accessed.
inherited
-
toModel(
) → ScalerModel - Serializes the model to a ScalerModel object.
-
toString(
) → String -
A string representation of this object.
inherited
-
transform(
List< List< data) → List<double> >List< double> > - Standardizes the data (zero mean, unit variance).
Operators
-
operator ==(
Object other) → bool -
The equality operator.
inherited