expr
library
Functions
abs (VARP x )
→ VARP
Computes the absolute value of a variable.
Given a variable of integer or floating-point values, this operation returns a variable of the same type,
where each element contains the absolute value of the corresponding element in the input.
acos (VARP x )
→ VARP
Computes acos of x element-wise.
acosh (VARP x )
→ VARP
Computes acosh of x element-wise.
add (VARP x , VARP y )
→ VARP
Returns x + y element-wise.
argMax (VARP x , int axis )
→ VARP
Returns the index with the largest value across axes of a tensor.
argMin (VARP x , int axis )
→ VARP
Returns the index with the smallest value across axes of a tensor.
Args:
array2string (List <num > data , List <int > shape , {PrintOptions options = const PrintOptions() , String separator = ', ' , String prefix = '' , String suffix = '' })
→ String
asin (VARP x )
→ VARP
Computes the trignometric inverse sine of x element-wise.
asinh (VARP x )
→ VARP
Computes asinh of x element-wise.
atan (VARP x )
→ VARP
Computes the trignometric inverse tangent of x element-wise.
atan2 (VARP x , VARP y )
→ VARP
Computes arctangent of y/x element-wise, respecting signs of the arguments.
atanh (VARP x )
→ VARP
Computes atanh of x element-wise.
avgPool (VARP x , List <int > kernal , {PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > pads = const [0, 0] })
→ VARP
batchMatMul (VARP x , VARP y , {bool adjX = false , bool adjY = false })
→ VARP
Multiplies slices of two variable in batches
batchToSpaceND (VARP input , VARP blockShape , VARP crops )
→ VARP
BatchToSpace for N-D variables
biasAdd (VARP x , VARP y )
→ VARP
Adds bias to value.
bitwiseAnd (VARP x , VARP y )
→ VARP
Returns the truth value of x & y element-wise.
bitwiseOr (VARP x , VARP y )
→ VARP
Returns the truth value of x | y element-wise.
bitwiseXor (VARP x , VARP y )
→ VARP
Returns the truth value of x ^ y element-wise.
broadcastTo (VARP x , VARP shape )
→ VARP
calcColumnWidths (List <num > data , List <int > shape , PrintOptions options )
→ List <int >
cast <T extends SizedNativeType > (VARP x , {HalideType ? dtype })
→ VARP
Casts a variable to a new type.
ceil (VARP x )
→ VARP
Returns element-wise smallest integer not less than x.
changeInputFormat (VARP x , DimensionFormat format )
→ VARP
Convert a variable to another format(possibily added before input).
channelShuffle (VARP x , int group )
→ VARP
clone (VARP x , {bool deepCopy = false })
→ VARP
concat (List <VARP > values , int axis )
→ VARP
Concatenates variables along one dimension.
constant <T extends SizedNativeType > (Iterable <num > data , Iterable <int > shape , {DimensionFormat format = DimensionFormat.NHWC })
→ VARP
create a constant variable.
conv (VARP x , VARP weight , {VARP ? bias , PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > dilatie = const [1, 1] , int group = 1 , List <int > pads = const [0, 0] })
→ VARP
conv2d (VARP x , VARP weight , {VARP ? bias , PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > dilatie = const [1, 1] , int group = 1 , List <int > pads = const [0, 0] })
→ VARP
conv2dTranspose (VARP x , VARP weight , {VARP ? bias , PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > dilatie = const [1, 1] , int group = 1 , List <int > pads = const [0, 0] })
→ VARP
convert (VARP input , DimensionFormat format )
→ VARP
Convert a variable to another format(possibily added after input).
cos (VARP x )
→ VARP
Computes cos of x element-wise.
cosh (VARP x )
→ VARP
Computes cosh of x element-wise.
CosineSimilarity (VARP input0 , VARP input1 , VARP inputDim )
→ VARP
crop (VARP images , VARP size , int axis , List <int > offset )
→ VARP
Crop images.
cropAndResize (VARP image , VARP boxes , VARP boxInd , VARP cropSize , InterpolationMethod method , {double extrapolationValue = 0.0 })
→ VARP
Extracts crops from the input image variable and resizes them using bilinear sampling or nearest neighbor sampling (possibly with aspect ratio change)
to a common output size specified by crop_size.
cumProd (VARP x , int axis )
→ VARP
cumSum (VARP x , int axis , {bool exclusive = false , bool reverse = false })
→ VARP
deconv (VARP x , VARP weight , {VARP ? bias , PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > dilatie = const [1, 1] , int group = 1 , List <int > pads = const [0, 0] })
→ VARP
depthToSpace (VARP input , int blockSize )
→ VARP
Rearranges data from depth into blocks of spatial data.
divide (VARP x , VARP y )
→ VARP
Computes Python style division of x by y.
elu (VARP features , {double alpha = 1.0 })
→ VARP
Computes exponential linear: alpha * (exp(features) - 1) if < 0, features otherwise.
equal (VARP x , VARP y )
→ VARP
Returns the truth value of (x == y) element-wise.
erf (VARP x )
→ VARP
Computes the Gauss error function of x element-wise.
erfc (VARP x )
→ VARP
Computes the complementary error function of x element-wise.
erfinv (VARP x )
→ VARP
Computes the inverse function for erf, for x element-wise.
exp (VARP x )
→ VARP
Computes exponential of x element-wise.
expandDims (VARP x , int axis )
→ VARP
Returns a variable with an additional dimension inserted at index axis.
expandDims1 (VARP x , VARP axis )
→ VARP
expm1 (VARP x )
→ VARP
Computes ((exponential of x) - 1) element-wise.
fill (VARP dims , VARP value )
→ VARP
Creates a variable filled with a scalar value.
floatToInt8 (VARP x , VARP scale , {int minvalue = -127 , int maxValue = 127 , int ? zeroPoint })
→ VARP
floor (VARP x )
→ VARP
Returns element-wise largest integer not greater than x.
floorDiv (VARP x , VARP y )
→ VARP
Returns the value of (x // y) element-wise.
floorMod (VARP x , VARP y )
→ VARP
Returns element-wise remainder of division
formatAligned (num v , int width , PrintOptions options )
→ String
formatFloat (num x , int precision , bool suppress )
→ String
formatInt (int x )
→ String
gather (VARP input , VARP indices )
→ VARP
Gather slices from params according to indices.
gatherElements (VARP params , VARP indices , {VARP ? axis })
→ VARP
gatherND (VARP params , VARP indices )
→ VARP
Gather slices from params into a variable with shape specified by indices.
gatherV2 (VARP input , VARP indices , VARP axis )
→ VARP
Gather slices from params axis according to indices.
gelu (VARP x )
→ VARP
Computes Gelu of x element-wise.
greater (VARP x , VARP y )
→ VARP
Returns the truth value of (x > y) element-wise.
greaterEqual (VARP x , VARP y )
→ VARP
Returns the truth value of (x >= y) element-wise.
GridSample (VARP input , VARP grid , {InterpolationMethod mode = InterpolationMethod.BILINEAR , GridSamplePaddingMode paddingMode = GridSamplePaddingMode.GRID_SAMPLE_PADDING_ZEROS , bool alignCorners = false })
→ VARP
hardswish (VARP x )
→ VARP
Computes Hardswish of x element-wise.
histogram (VARP x , int bin , int min , int max , {int channel = -1 })
→ VARP
input <T extends SizedNativeType > (List <int > shape , {DimensionFormat dataFormat = DimensionFormat.NC4HW4 })
→ VARP
create a input variable.
int8ToFloat (VARP x , VARP scale , {int ? zeroPoint })
→ VARP
interp (List <VARP > xs , double widthScale , double heightScale , int outputWidth , int outputHeight , int resizeType , bool alignCorners )
→ VARP
less (VARP x , VARP y )
→ VARP
Returns the truth value of (x < y) element-wise.
lessEqual (VARP x , VARP y )
→ VARP
Returns the truth value of (x <= y) element-wise.
linSpace (VARP start , VARP stop , VARP num )
→ VARP
log (VARP x )
→ VARP
Computes natural logarithm of x element-wise.
log1p (VARP x )
→ VARP
Computes natural logarithm of (1 + x) element-wise.
logicalOr (VARP x , VARP y )
→ VARP
Returns the truth value of x OR y element-wise.
matMul (VARP x , VARP y , {bool transposeA = false , bool transposeB = false })
→ VARP
Multiply the matrix "a" by the matrix "b".
matrixBandPart (VARP input , VARP lower , VARP upper )
→ VARP
Copies a variable setting everything outside a central band in each innermost matrix.
max (VARP x , VARP y , {List <double > coeff = const [] })
→ VARP
Compute the element-wise max
maximum (VARP x , VARP y )
→ VARP
Returns the max of x and y (i.e. x > y ? x : y) element-wise.
maxPool (VARP x , List <int > kernal , {PaddingMode pad = PaddingMode.VALID , List <int > stride = const [1, 1] , List <int > pads = const [0, 0] })
→ VARP
minimum (VARP x , VARP y )
→ VARP
Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod (VARP x , VARP y )
→ VARP
moments (VARP x , List <int > axis , VARP shift , bool keepDims )
→ List <VARP >
Calculates the mean and variance of x.
multiply (VARP x , VARP y )
→ VARP
Returns x * y element-wise.
negative (VARP x )
→ VARP
Computes numerical negative value element-wise.
nms (VARP boxes , VARP scores , int maxDetections , {double iouThreshold = -1.0 , double scoreThreshold = -1.0 })
→ VARP
normalize (VARP x , int acrossSpatial , int channelShared , double eps , List <double > scale )
→ VARP
notEqual (VARP x , VARP y )
→ VARP
Returns the truth value of x != y element-wise.
oneHot (VARP indices , VARP depth , {VARP ? onValue , VARP ? offValue , int axis = -1 })
→ VARP
pad (VARP x , VARP paddings , {PadValueMode mode = PadValueMode.CONSTANT })
→ VARP
Pads a variable.
Permute (VARP input , List <int > dims )
→ VARP
SSD network's permute layer.
pow (VARP x , VARP y )
→ VARP
Computes the power of one value to another.
PReLU (VARP x , List <double > slopes )
→ VARP
Given an input value x, it computes the output as x if x > 0 and slopes * x if x <= 0.
prod (VARP x , VARP y , {List <double > coeff = const [] })
→ VARP
Compute the element-wise prod
randomUniform <T extends SizedNativeType > (VARP shape , {double low = 0.0 , double high = 1.0 , int seed0 = 0 , int seed1 = 0 })
→ VARP
range (VARP start , VARP limit , VARP delta )
→ VARP
Creates a sequence of numbers.
rank (VARP input )
→ VARP
Returns the rank of a variable.
reciprocal (VARP x )
→ VARP
Computes the reciprocal of x element-wise.
reduceAll (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the "logical and" of elements across dimensions of a variable.
reduceAllMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceAny (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the "logical or" of elements across dimensions of a variable.
reduceAnyMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceMax (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the maximum of elements across dimensions of a variable.
reduceMaxMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceMean (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the mean of elements across dimensions of a variable.
reduceMeanMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceMin (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the minimum of elements across dimensions of a variable.
reduceMinMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceProd (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the product of elements across dimensions of a variable.
reduceProdMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceSum (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the sum of elements across dimensions of a variable
reduceSumMutable (VARP x , {VARP ? axis , bool keepDims = false })
→ VARP
reduceVariance (VARP x , {List <int > axis = const [] , bool keepDims = false })
→ VARP
Computes the variance of elements across dimensions of a variable.
ReLU (VARP x , {double slope = 0.0 })
→ VARP
Given an input value x, it computes the output as x if x > 0 and slope * x if x <= 0.
ReLU6 (VARP x , {double minValue = 0.0 , double maxValue = 6.0 })
→ VARP
Given an input value x, it computes Rectified Linear 6: min(max(x, 0), 6).
reshape (VARP x , List <int > shape , {DimensionFormat format = DimensionFormat.NCHW })
→ VARP
Reshapes a variable.
resize (VARP images , double xScale , double yScale )
→ VARP
Resize images.
reverse (VARP x , VARP axis )
→ VARP
reverseSequence (VARP x , VARP y , int batchDim , int seqDim )
→ VARP
round (VARP x )
→ VARP
Returns element-wise rounded integer not less than x.
rsqrt (VARP x )
→ VARP
Computes reciprocal of square root of x element-wise.
scalar <T extends SizedNativeType > (num value , {HalideType ? dtype })
→ VARP
scale (VARP x , int channels , List <double > scales , List <double > biases )
→ VARP
scatterElements (VARP data , VARP indices , VARP updates , {VARP ? axis , int reduction = -1 })
→ VARP
scatterND (VARP indices , VARP updates , VARP shape , {VARP ? input , int ? reduction })
→ VARP
select (VARP select , VARP input0 , VARP input1 )
→ VARP
selu (VARP features , double scale , double alpha )
→ VARP
Computes scaled exponential linear: scale * alpha * (exp(features) - 1) if < 0, scale * features otherwise.
setDiff1D (VARP x , VARP y )
→ VARP
Computes the difference between two lists of numbers or strings.
shape (VARP input , {bool nchw = false })
→ VARP
Returns the shape of a variable.
sigmoid (VARP x )
→ VARP
Computes sigmoid of x element-wise.
sign (VARP x )
→ VARP
Computes sign of x eltment-wise
silu (VARP x )
→ VARP
Computes sigmoid of x element-wise.
sin (VARP x )
→ VARP
Computes sine of x element-wise.
sinh (VARP x )
→ VARP
Computes sinh of x element-wise.
size (VARP input )
→ VARP
Computes the size of the variable
slice (VARP x , VARP starts , VARP sizes )
→ VARP
softMax (VARP logits , {int axis = -1 })
→ VARP
Computes softmax activations.
softPlus (VARP features )
→ VARP
Computes softplus: log(exp(features) + 1).
softSign (VARP features )
→ VARP
Computes softsign: features / (abs(features) + 1).
sort (VARP x , {int axis = -1 , bool arg = false , bool descend = false })
→ VARP
spaceToBatchND (VARP input , VARP blockShape , VARP paddings )
→ VARP
This operation divides "spatial" dimensions 1, ..., M of the input into a grid of blocks of shape block_shape,
and interleaves these blocks with the "batch" dimension
such that in the output, the spatial dimensions 1, ..., M correspond to the position within the grid,
and the batch dimension combines both the position within a spatial block and the original batch position.
spaceToDepth (VARP input , int blockSize )
→ VARP
Rearranges blocks of spatial data, into depth.
split (VARP value , List <int > sizeSplits , {int axis = 0 })
→ List <VARP >
Splits a variable value into a list of sub variables.
sqrt (VARP x )
→ VARP
Computes square root of x element-wise.
square (VARP x )
→ VARP
Computes square of x element-wise.
squaredDifference (VARP x , VARP y )
→ VARP
Returns the value of (x - y)(x - y) element-wise.
squeeze (VARP input , {List <int > axis = const [] })
→ VARP
Removes dimensions of size 1 from the shape of a variable.
stack (List <VARP > values , {int axis = 0 })
→ VARP
Stacks a list of rank-R variables into one rank-(R+1) variable.
stridedSlice (VARP input , VARP begin , VARP end , VARP strided , int beginMask , int endMask , int ellipsisMask , int newAxisMask , int shrinkAxisMask )
→ VARP
stridedSliceWrite (VARP input , VARP begin , VARP end , VARP strided , VARP write , int beginMask , int endMask , int ellipsisMask , int newAxisMask , int shrinkAxisMask )
→ VARP
sub (VARP x , VARP y , {List <double > coeff = const [] })
→ VARP
Compute the element-wise sub
subtract (VARP x , VARP y )
→ VARP
Returns x - y element-wise.
sum (VARP x , VARP y , {List <double > coeff = const [] })
→ VARP
Compute the element-wise sum
svd (VARP x )
→ List <VARP >
tan (VARP x )
→ VARP
Computes tan of x element-wise.
tanh (VARP x )
→ VARP
Computes hyperbolic tangent of x element-wise.
threshold (VARP features , {double alpha = 1.0 })
→ VARP
Given an input value x, it computes the output as 1.0 if x > threshold and 0.0 if x <= threshold.
tile (VARP input , VARP multiples )
→ VARP
Constructs a variable by tiling a given variable.
transpose (VARP x , List <int > perm )
→ VARP
Transposes x.
transpose1 (VARP x , VARP perm )
→ VARP
unravelIndex (VARP indices , VARP dims )
→ VARP
unsqueeze (VARP input , {List <int > axis = const [] })
→ VARP
unstack (VARP input , {int axis = 0 })
→ List <VARP >
Unpacks the given dimension of a rank-R tensor into rank-(R-1) variable.
where (VARP x )
→ VARP
zeroGrad (VARP input )
→ VARP
zerosLike (VARP input )
→ VARP
Creates a variable with all elements set to zero.