numpy
library
Functions
-
abs(VARP x)
→ VARP
-
-
absolute(VARP x)
→ VARP
-
-
add(VARP x, VARP y)
→ VARP
-
-
all(VARP a, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
any(VARP a, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
arange<T extends SizedNativeType>({required num stop, num? start, num? step})
→ VARP
-
arange(
start, stop, step, dtype=None)
Return evenly spaced values within a given interval.
-
arccos(VARP x)
→ VARP
-
-
arccosh(VARP x)
→ VARP
-
-
arcsin(VARP x)
→ VARP
-
-
arcsinh(VARP x)
→ VARP
-
-
arctan(VARP x)
→ VARP
-
-
arctan2(VARP x, VARP y)
→ VARP
-
-
arctanh(VARP x)
→ VARP
-
-
argmax(VARP x, {int? axis})
→ VARP
-
-
argmin(VARP x, {int? axis})
→ VARP
-
-
argsort(VARP x, {int axis = -1, bool descend = false})
→ VARP
-
-
argwhere(VARP x)
→ VARP
-
-
around(VARP x)
→ VARP
-
-
array<T extends SizedNativeType>(dynamic a, {String order = "K", bool copy = true, int ndim = 0})
→ VARP
-
array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0, like=None)
Create an array.
-
arrayEqual(VARP a1, VARP a2, {bool equalNan = false})
→ VARP
-
-
arrayEquiv(VARP a1, VARP a2)
→ VARP
-
-
asanyarray<T extends SizedNativeType>(dynamic a, {String order = "K"})
→ VARP
-
asanyarray(a, dtype=None, order=None)
Convert the input to an array.
-
asarray<T extends SizedNativeType>(dynamic a, {String order = "K"})
→ VARP
-
asarray(a, dtype=None, order=None)
Convert the input to an array.
-
ascontiguousarray<T extends SizedNativeType>(dynamic a, {String order = "K"})
→ VARP
-
ascontiguousarray(a, dtype=None, order=None)
Return a contiguous array (ndim >= 1) in memory (C order).
-
asmatrix<T extends SizedNativeType>(dynamic a, {String order = "K"})
→ VARP
-
asmatrix(a, dtype=None)
Interpret the input as a matrix.
-
bitwiseAnd(VARP x, VARP y)
→ VARP
-
-
bitwiseOr(VARP x, VARP y)
→ VARP
-
-
bitwiseXor(VARP x, VARP y)
→ VARP
-
-
broadcast(VARP x, VARP y)
→ VARP
-
-
broadcastTo(VARP x, List<int> shape)
→ VARP
-
-
cbrt(VARP x)
→ VARP
-
-
ceil(VARP x)
→ VARP
-
-
clip(VARP x, double aMin, double aMax)
→ VARP
-
-
concatenate(List<VARP> vars, {int axis = 0})
→ VARP
-
-
copy<T extends SizedNativeType>(VARP a, {String order = "K"})
→ VARP
-
copy(a, order='K', subok=False)
Return an array copy of the given object.
-
copysign(VARP x, VARP y)
→ VARP
-
-
cos(VARP x)
→ VARP
-
-
cosh(VARP x)
→ VARP
-
-
countNonZero(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
cumprod(VARP x, int axis)
→ VARP
-
-
cumsum(VARP x, int axis)
→ VARP
-
-
diag(VARP v, {int k = 0})
→ VARP
-
-
diagflat(VARP v, {int k = 0})
→ VARP
-
-
divide(VARP x, VARP y)
→ VARP
-
-
divmod(VARP x, VARP y)
→ (VARP, VARP)
-
-
dot<T extends SizedNativeType>(VARP a, VARP b)
→ VARP
-
-
empty<T extends SizedNativeType>(List<int> shape, {String order = "C"})
→ VARP
-
empty(shape, dtype=float32)
Return a new var of given shape and type, without initializing entries.
-
emptyLike<T extends SizedNativeType>(VARP prototype, {String order = "K", bool subOk = true, List<int>? shape})
→ VARP
-
empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
Return a new var with the same shape and type as a given var.
-
equal(VARP a, VARP b)
→ VARP
-
-
exp(VARP x)
→ VARP
-
-
exp2(VARP x)
→ VARP
-
-
expandDims(VARP x, List<int> axis)
→ VARP
-
-
expm1(VARP x)
→ VARP
-
-
eye<T extends SizedNativeType>(int N, {int? M, int k = 0, String order = "C"})
→ VARP
-
eye(N, M=None, k=0, dtype=float32, order='C')
Return a 2-D var with ones on the diagonal and zeros elsewhere.
-
fabs(VARP x)
→ VARP
-
-
fix(VARP x)
→ VARP
-
-
flatnonzero(VARP x)
→ VARP
-
-
floor(VARP x)
→ VARP
-
-
floorDiv(VARP x, VARP y)
→ VARP
-
-
full<T extends SizedNativeType>(List<int> shape, dynamic fillValue, {String order = "C"})
→ VARP
-
full(shape, fill_value, dtype=None, order='C')
Return a new var of given shape and type, filled with
fill_value.
-
fullLike<T extends SizedNativeType>(VARP a, num fillValue, {String order = "K", List<int>? shape})
→ VARP
-
full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None)
Return a full var with the same shape and type as a given var.
-
geomspace<T extends SizedNativeType>(num start, num stop, {int count = 50})
→ VARP
-
-
greater(VARP a, VARP b)
→ VARP
-
-
greaterEqual(VARP a, VARP b)
→ VARP
-
-
histogram(VARP x, {int bins = 10, (int, int)? range})
→ (VARP, VARP)
-
-
hypot(VARP x, VARP y)
→ VARP
-
-
identity<T extends SizedNativeType>(int n)
→ VARP
-
identity(n, dtype=float32)
Return the identity var. The identity var is a
square array with ones on the main diagonal.
-
inner(VARP a, VARP b)
→ VARP
-
-
ldexp(VARP x, VARP y)
→ VARP
-
-
less(VARP a, VARP b)
→ VARP
-
-
lessEqual(VARP a, VARP b)
→ VARP
-
-
linspace<T extends SizedNativeType>(num start, num stop, {int count = 50})
→ VARP
-
-
log(VARP x)
→ VARP
-
-
log10(VARP x)
→ VARP
-
-
log1p(VARP x)
→ VARP
-
-
log2(VARP x)
→ VARP
-
-
logaddexp(VARP x, VARP y)
→ VARP
-
-
logaddexp2(VARP x, VARP y)
→ VARP
-
-
logspace<T extends SizedNativeType>(num start, num stop, {int count = 50, double base = 10.0})
→ VARP
-
-
mat<T extends SizedNativeType>(dynamic data)
→ VARP
-
-
matmul(VARP a, VARP b)
→ VARP
-
-
matrix<T extends SizedNativeType>(dynamic data)
→ VARP
-
-
max(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
maximum(VARP x, VARP y)
→ VARP
-
-
mean(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
median(VARP x, {int axis = -1, bool keepDims = false})
→ VARP
-
-
meshgrid<T extends SizedNativeType>(VARP x, VARP y)
→ VARP
-
-
min(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
minimum(VARP x, VARP y)
→ VARP
-
-
mod(VARP x, VARP y)
→ VARP
-
-
moveaxis(VARP a, List<int> source, List<int> destination)
→ VARP
-
-
msort(VARP x)
→ VARP
-
-
multiply(VARP x, VARP y)
→ VARP
-
-
negative(VARP x)
→ VARP
-
-
nonzero(VARP x)
→ (VARP, VARP?)
-
-
norm(VARP x, {dynamic ord, dynamic axis, bool keepDims = false})
→ VARP
-
-
notEqual(VARP a, VARP b)
→ VARP
-
-
ones<T extends SizedNativeType>(List<int> shape, {String order = "C"})
→ VARP
-
ones(shape, dtype=None, order='C')
Return a new array of given shape and type, filled with ones.
-
onesLike<T extends SizedNativeType>(VARP a, {String order = "K", List<int>? shape})
→ VARP
-
ones_like(a, dtype=None, order='K', subok=True, shape=None)
Return an array of ones with the same shape and type as a given array.
-
outer(VARP a, VARP b)
→ VARP
-
-
pad(VARP x, List<int> padWidth, {PadValueMode mode = F.PadValueMode.CONSTANT})
→ VARP
-
-
positive(VARP x)
→ VARP
-
-
power(VARP x, VARP y)
→ VARP
-
-
prod(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
ptp(VARP x, {List<int> axis = const []})
→ VARP
-
-
randint(int low, {int? high, List<int> size = const [], int seed0 = 0, int seed1 = 0})
→ VARP
-
-
random(List<int> shape, {double low = 0.0, double high = 1.0, int seed0 = 0, int seed1 = 0})
→ VARP
-
-
ravel(VARP a)
→ VARP
-
-
reciprocal(VARP x)
→ VARP
-
-
repeat(VARP x, int reps)
→ VARP
-
-
reshape(VARP a, List<int> newShape, {DimensionFormat format = DimensionFormat.NCHW})
→ VARP
-
-
rint(VARP x)
→ VARP
-
-
rollaxis(VARP a, int axis, {int start = 0})
→ VARP
-
-
round(VARP x)
→ VARP
-
-
scalar<T extends SizedNativeType>(num value, {HalideType? dtype})
→ VARP
-
-
shape(VARP a)
→ List<int>
-
-
sign(VARP x)
→ VARP
-
-
signbit(VARP x)
→ VARP
-
-
sin(VARP x)
→ VARP
-
-
sinc(VARP x)
→ VARP
-
-
sinh(VARP x)
→ VARP
-
-
solve(VARP a, VARP b)
→ VARP
-
-
sort(VARP x, {int axis = -1, bool descend = false})
→ VARP
-
-
split(VARP arr, List<int> indicesOrSections, {int axis = 0})
→ List<VARP>
-
-
sqrt(VARP x)
→ VARP
-
-
square(VARP x)
→ VARP
-
-
squeeze(VARP x, {List<int> axis = const []})
→ VARP
-
-
std(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
subtract(VARP x, VARP y)
→ VARP
-
-
sum(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
svd(VARP a, {bool fullMatrices = true, bool computeUV = true, bool hermitian = false})
→ (VARP, VARP, VARP)
-
-
swapaxes(VARP a, int axis1, int axis2)
→ VARP
-
-
tan(VARP x)
→ VARP
-
-
tanh(VARP x)
→ VARP
-
-
tile(VARP x, List<int> reps)
→ VARP
-
-
transpose(VARP a, {List<int>? axes})
→ VARP
-
-
tri(VARP N, {int? M, int k = 0})
→ VARP
-
-
tril(VARP v, {int k = 0})
→ VARP
-
-
triu(VARP v, {int k = 0})
→ VARP
-
-
trueDiv(VARP x, VARP y)
→ VARP
-
-
trunc(VARP x)
→ VARP
-
-
vander(VARP x, {int? n})
→ VARP
-
-
variance(VARP x, {List<int> axis = const [], bool keepDims = false})
→ VARP
-
-
vdot(VARP a, VARP b)
→ VARP
-
-
where(VARP condition, {VARP? x, VARP? y})
→ VARP
-
-
zeros<T extends SizedNativeType>(List<int> shape, {String order = "C"})
→ VARP
-
zeros(shape, dtype=None, order='C')
Return a new array of given shape and type, filled with zeros.
-
zerosLike<T extends SizedNativeType>(VARP a, {String order = "K", List<int>? shape})
→ VARP
-
zeros_like(a, dtype=None, order='K', subok=True, shape=None)
Return an array of zeros with the same shape and type as a given array.