wireframeCamera static method
Implementation
static Geometry wireframeCamera({
double sphereRadius = 0.2,
double frustumDistance = 1.0,
double frustumNear = 0.5,
double frustumFar = 1.0,
double fov = pi / 3,
bool normals = true,
bool uvs = true,
double wireThickness = 0.01, // Thickness of the wireframe edges
}) {
List<double> verticesList = [];
List<double> normalsList = [];
List<double> uvsList = [];
List<int> indices = [];
// Helper function to create a thin triangular tube between two points
void addWireSegment(List<double> start, List<double> end) {
int baseIndex = verticesList.length ~/ 3;
// Calculate direction vector
double dx = end[0] - start[0];
double dy = end[1] - start[1];
double dz = end[2] - start[2];
double length = sqrt(dx * dx + dy * dy + dz * dz);
// Create perpendicular vectors for thickness
List<double> perp1, perp2;
if (dx.abs() < 0.9) {
perp1 = [0, -dz, dy];
} else {
perp1 = [-dy, dx, 0];
}
// Normalize perpendicular vector
double perpLength = sqrt(perp1[0] * perp1[0] + perp1[1] * perp1[1] + perp1[2] * perp1[2]);
if (perpLength > 0) {
perp1 = [perp1[0] / perpLength * wireThickness,
perp1[1] / perpLength * wireThickness,
perp1[2] / perpLength * wireThickness];
}
// Second perpendicular (cross product)
perp2 = [dy * perp1[2] - dz * perp1[1],
dz * perp1[0] - dx * perp1[2],
dx * perp1[1] - dy * perp1[0]];
// Create 4 vertices around each end point (rectangular cross-section)
List<List<double>> startVerts = [
[start[0] + perp1[0], start[1] + perp1[1], start[2] + perp1[2]],
[start[0] - perp1[0], start[1] - perp1[1], start[2] - perp1[2]],
[start[0] + perp2[0], start[1] + perp2[1], start[2] + perp2[2]],
[start[0] - perp2[0], start[1] - perp2[1], start[2] - perp2[2]],
];
List<List<double>> endVerts = [
[end[0] + perp1[0], end[1] + perp1[1], end[2] + perp1[2]],
[end[0] - perp1[0], end[1] - perp1[1], end[2] - perp1[2]],
[end[0] + perp2[0], end[1] + perp2[1], end[2] + perp2[2]],
[end[0] - perp2[0], end[1] - perp2[1], end[2] - perp2[2]],
];
// Add vertices
for (var vert in startVerts) {
verticesList.addAll(vert);
normalsList.addAll([vert[0], vert[1], vert[2]]); // Simple normal
uvsList.addAll([0, 0]);
}
for (var vert in endVerts) {
verticesList.addAll(vert);
normalsList.addAll([vert[0], vert[1], vert[2]]); // Simple normal
uvsList.addAll([1, 0]);
}
// Create triangular faces for the tube (4 sides, 2 triangles each)
for (int i = 0; i < 4; i++) {
int next = (i + 1) % 4;
int startCurrent = baseIndex + i;
int startNext = baseIndex + next;
int endCurrent = baseIndex + 4 + i;
int endNext = baseIndex + 4 + next;
// Two triangles per side
indices.addAll([startCurrent, endCurrent, startNext]);
indices.addAll([startNext, endCurrent, endNext]);
}
}
// Create sphere wireframe edges
int latitudeBands = 6;
int longitudeBands = 6;
// Store sphere points as a flat list for easier access
List<List<double>> allSpherePoints = [];
// Generate sphere vertices and store them
for (int latNumber = 0; latNumber <= latitudeBands; latNumber++) {
double theta = latNumber * pi / latitudeBands;
double sinTheta = sin(theta);
double cosTheta = cos(theta);
for (int longNumber = 0; longNumber <= longitudeBands; longNumber++) {
double phi = longNumber * 2 * pi / longitudeBands;
double sinPhi = sin(phi);
double cosPhi = cos(phi);
double x = sphereRadius * cosPhi * sinTheta;
double y = sphereRadius * cosTheta;
double z = sphereRadius * sinPhi * sinTheta;
allSpherePoints.add([x, y, z]);
}
}
// Helper function to get sphere point by lat/long indices
List<double> getSpherePoint(int lat, int long) {
int index = lat * (longitudeBands + 1) + long;
return allSpherePoints[index];
}
// Add sphere wireframe edges
for (int latNumber = 0; latNumber < latitudeBands; latNumber++) {
for (int longNumber = 0; longNumber < longitudeBands; longNumber++) {
// Vertical lines
addWireSegment(getSpherePoint(latNumber, longNumber),
getSpherePoint(latNumber + 1, longNumber));
// Horizontal lines
addWireSegment(getSpherePoint(latNumber, longNumber),
getSpherePoint(latNumber, (longNumber + 1) % longitudeBands));
}
}
// Calculate frustum corners
double nearHeight = 2.0 * frustumNear * tan(fov / 2);
double nearWidth = nearHeight * 1.333;
double farHeight = 2.0 * frustumFar * tan(fov / 2);
double farWidth = farHeight * 1.333;
// Frustum corner points
List<double> sphereCenter = [0, 0, 0];
List<List<double>> nearCorners = [
[-nearWidth / 2, -nearHeight / 2, -frustumNear], // Bottom-left
[nearWidth / 2, -nearHeight / 2, -frustumNear], // Bottom-right
[nearWidth / 2, nearHeight / 2, -frustumNear], // Top-right
[-nearWidth / 2, nearHeight / 2, -frustumNear], // Top-left
];
List<List<double>> farCorners = [
[-farWidth / 2, -farHeight / 2, -frustumFar], // Bottom-left
[farWidth / 2, -farHeight / 2, -frustumFar], // Bottom-right
[farWidth / 2, farHeight / 2, -frustumFar], // Top-right
[-farWidth / 2, farHeight / 2, -frustumFar], // Top-left
];
// Add frustum wireframe edges
// Near rectangle edges
for (int i = 0; i < 4; i++) {
addWireSegment(nearCorners[i], nearCorners[(i + 1) % 4]);
}
// Far rectangle edges
for (int i = 0; i < 4; i++) {
addWireSegment(farCorners[i], farCorners[(i + 1) % 4]);
}
// Connecting edges between near and far
for (int i = 0; i < 4; i++) {
addWireSegment(nearCorners[i], farCorners[i]);
}
// Lines from sphere center to near corners
for (int i = 0; i < 4; i++) {
addWireSegment(sphereCenter, nearCorners[i]);
}
Float32List vertices = Float32List.fromList(verticesList);
Float32List? _normals = normals ? Float32List.fromList(normalsList) : null;
Float32List? _uvs = uvs ? Float32List.fromList(uvsList) : null;
return Geometry(vertices, Uint16List.fromList(indices),
normals: _normals, uvs: _uvs, primitiveType: PrimitiveType.TRIANGLES);
}