dartantic_ai 0.4.0 copy "dartantic_ai: ^0.4.0" to clipboard
dartantic_ai: ^0.4.0 copied to clipboard

A Dart library for easily interacting with LLMs in a typed manner.

dartantic_ai #

The dartantic_ai package for Dart is inspired by the pydantic-ai package for Python to provide easy, typed access to LLM outputs and tool/function calls across multiple LLMs.

Alpha #

Only supporting Gemini and OpenAI models via API keys in this limited release.

Features #

The following are the target features for this package:

  • ✅ Multi-Model Support
  • ✅ Create agents from model strings (e.g. openai:gpt-4o) or typed providers (e.g. GeminiProvider())
  • ✅ Automatically check environment for API key if none is provided (not web compatible)
  • ✅ Streaming string output via Agent.runStream
  • ✅ Multi-turn chat/message history support via the messages parameter and the Message class (with roles and content types)
  • ✅ Typed output via Agent.runFor
  • ✅ Define tools and their inputs/outputs easily
  • ✅ Automatically generate LLM-specific tool/output schemas
  • ✅ Bring your own provider
  • ✅ Execute tools with validated inputs
  • ❌ Chains and Sequential Execution
  • ❌ JSON Mode, Functions Mode, Flexible Decoding
  • ❌ Simple Assistant/Agent loop utilities
  • ❌ Per call usage statistics

Usage #

The following are some examples that work in the current build.

Basic Agent Usage #

The following shows simple agent usage using the Agent() constructor, which takes a model string.

void main() async {
  // Create an agent with a system prompt
  final agent = Agent(
    'openai',  // Can also use 'openai:gpt-4o' or 'openai/gpt-4o'
    systemPrompt: 'Be concise, reply with one sentence.',
  );

  // Run the agent with a prompt (non-streaming)
  final result = await agent.run('Where does "hello world" come from?');
  print(result.output); // Output: one sentence on the origin of "hello world"
}

Alternatively, you can use the Agent() constructor which takes a provider directly:

void main() async {
  // Create an agent with a provider
  final agent = Agent.provider(
    OpenAiProvider(),
    systemPrompt: 'Be concise, reply with one sentence.',
  );

  // Run the agent with a prompt (non-streaming)
  final result = await agent.run('Where does "hello world" come from?');
  print(result.output); // Output: one sentence on the origin of "hello world"
}

Using DotPrompt #

You can also use the Agent.runPrompt() method with a DotPrompt object for more structured prompts:

void main() async {
  final prompt = DotPrompt('''
---
model: openai
input:
  default:
    length: 3
    text: "The quick brown fox jumps over the lazy dog."
---
Summarize this in {{length}} words: {{text}}
''');

  final result = await Agent.runPrompt(prompt);
  print(result.output); // Output: Fox jumps dog.
}

JSON Output with JSON Schema #

The following example provides JSON output using a hand-written schemaMap property, which configures the underlying LLM to response in JSON.

void main() async {
  // Define a JSON schema for structured output
  final townCountrySchema = {
    'type': 'object',
    'properties': {
      'town': {'type': 'string'},
      'country': {'type': 'string'},
    },
    'required': ['town', 'country'],
    'additionalProperties': false,
  };

  // Create an agent with the schema
  final agent = Agent(
    'openai',
    outputType: townCountrySchema.toSchema(),
  );

  // Get structured output as a JSON object
  final result = await agent.run('The windy city in the US of A.');
  print(result.output); // Output: {"town":"Chicago","country":"United States"}
}

Manual Typed Output with Object Mapping #

The following example provides typed output using automatic json decoding from a hand-written fromJson method and a hand-written schemaMap property.

// Create a data class in your code
class TownAndcountry {
  final String town;
  final String country;
  
  TownAndcountry({required this.town, required this.country});
  
  factory TownAndcountry.fromJson(Map<String, dynamic> json) => TownAndcountry(
      town: json['town'],
      country: json['country'],
    );
  
  static Map<String, dynamic> get schemaMap => {
    'type': 'object',
    'properties': {
      'town': {'type': 'string'},
      'country': {'type': 'string'},
    },
    'required': ['town', 'country'],
    'additionalProperties': false,
  };
  
  @override
  String toString() => 'TownAndcountry(town: $town, country: $country)';
}

void main() async {
  // Use runFor with a type parameter for automatic conversion 
  final agent = Agent(
    'openai',
    outputType: TownAndcountry.schemaMap.toSchema(),
    outputFromJson: TownAndcountry.fromJson,
  );

  final result = await agent.runFor<TownAndcountry>(
    'The windy city in the US of A.',
  );

  print(result.output); // Output: TownAndcountry(town: Chicago, country: United States)
}

Automatic Typed Output with Object Mapping #

The following example provides typed output using json_serializable for automatic json decoding and soti_schema for automatic Json Schema definition.

// Create a data class in your code
@SotiSchema()
@JsonSerializable()
class TownAndcountry {
  TownAndcountry({required this.town, required this.country});

  factory TownAndcountry.fromJson(Map<String, dynamic> json) =>
      _$TownAndcountryFromJson(json);

  final String town;
  final String country;

  Map<String, dynamic> toJson() => _$TownAndcountryToJson(this);

  @jsonSchema
  static Map<String, dynamic> get schemaMap => _$TownAndcountrySchemaMap;

  @override
  String toString() => 'TownAndcountry(town: $town, country: $country)';
}

void main() async {
  // Use runFor with a type parameter for automatic conversion 
  final agent = Agent(
    'openai',
    outputType: TownAndcountry.schemaMap.toSchema(),
    outputFromJson: TownAndcountry.fromJson,
  );

  final result = await agent.runFor<TownAndcountry>(
    'The windy city in the US of A.',
  );

  print(result.output); // Output: TownAndcountry(town: Chicago, country: United States)
}

Typed Tool Calling #

Imagine you'd like to provided your AI Agent with some tools to call. You'd like those to be typed without manually creating a JSON Schema object to define the parameters. You can define the parameters to your tool with a Dart class:

@SotiSchema()
@JsonSerializable()
class TimeFunctionInput {
  TimeFunctionInput({required this.timeZoneName});
  
  /// The name of the time zone to get the time in (e.g. "America/New_York")
  final String timeZoneName;

  static TimeFunctionInput fromJson(Map<String, dynamic> json) =>
      _$TimeFunctionInputFromJson(json);

  @jsonSchema
  static Map<String, dynamic> get schemaMap => _$TimeFunctionInputSchemaMap;
}

The use of the JSON serializer and Soti Schema annotations causes the creation of a schemaMap property that provides a JSON schema at runtime that defines our tool:

Future<void> toolExample() async {
  final agent = Agent(
    'openai',
    systemPrompt: 'Show the time as local time.',
    tools: [
      Tool(
        name: 'time',
        description: 'Get the current time in a given time zone',
        inputType: TimeFunctionInput.schemaMap.toSchema(),
        onCall: onTimeCall,
      ),
    ],
  );

  final result = await agent.run('What is time is it in New York City?');
  print(result.output);
}

This code defines a tool that gets the current time for a particular time zone. The tool's input arguments are defined via the generated JSON schema.

The tool doesn't need to define a schema for the output of the tool -- the LLM will take whatever data you give it -- but we still need to be able to convert the output type to JSON:

@JsonSerializable()
class TimeFunctionOutput {
  TimeFunctionOutput({required this.time});

  /// The time in the given time zone
  final DateTime time;

  Map<String, dynamic> toJson() => _$TimeFunctionOutputToJson(this);
}

We can now use the JSON serialization support in these two types to implement the tool call function:

Future<Map<String, dynamic>?> onTimeCall(Map<String, dynamic> input) async {
  // parse the JSON input into a type-safe object
  final timeInput = TimeFunctionInput.fromJson(input);

  tz_data.initializeTimeZones();
  final location = tz.getLocation(timeInput.timeZoneName);
  final now = tz.TZDateTime.now(location);

  // construct a type-safe object, then translate to JSON to return
  return TimeFunctionOutput(time: now).toJson();
}

In this way, we use the tool input type to define the format of the JSON we're expecting from the LLM and to decode the input JSON into a typed object for our implementation of the onTimeCall function. Likewise, we use the tool output type to gather the returned data before encoding that back into JSON for the return to the LLM.

Since the LLM is a little more lax about the data you return to it, you may decide to define a Dart type for your input parameters and just bundle up the return data manually, like so:

Future<Map<String, dynamic>?> onTimeCall(Map<String, dynamic> input) async {
  // parse the JSON input into a type-safe object
  final timeInput = TimeFunctionInput.fromJson(input);

  tz_data.initializeTimeZones();
  final location = tz.getLocation(timeInput.timeZoneName);
  final now = tz.TZDateTime.now(location);

  // return a JSON map directly as output
  return {'time': now};
}

Not only is this simpler code, but it frees you from maintaining a separate type for output.

Multi-turn Chat (Message History) #

You can pass a list of Message objects to the agent for context-aware, multi-turn conversations. Each message has a role (system, user, model) and a list of content parts (text, media, etc.). Both OpenAI and Gemini providers support this interface.

import 'package:dartantic_ai/dartantic_ai.dart';
import 'package:dartantic_ai/src/models/message.dart';

void main() async {
  final agent = Agent('openai:gpt-4o');
  final messages = [
    Message(
      role: MessageRole.system,
      content: [TextPart('You are a helpful AI assistant.')],
    ),
    Message(
      role: MessageRole.user,
      content: [TextPart('Hello, can you help me with a task?')],
    ),
  ];

  // Pass the prompt as the user message, and the previous messages as context
  final prompt = 'What is 2 + 2?';
  final response = await agent.run(prompt, messages: messages);
  print(response.output); // Output: 4

  // The response.messages contains the full updated message history:
  // [
  //   Message(role: MessageRole.system, content: [TextPart('You are a helpful AI assistant.')]),
  //   Message(role: MessageRole.user, content: [TextPart('Hello, can you help me with a task?')]),
  //   Message(role: MessageRole.user, content: [TextPart('What is 2 + 2?')]),
  //   Message(role: MessageRole.model, content: [TextPart('4')]),
  // ]
}

Streaming Output #

Agent.runStream returns a Stream<AgentResponse>, allowing you to process output as it is generated by the LLM in real time. This is useful for displaying partial results to users or for handling long responses efficiently. Note: Agent.run returns a Future<AgentResponse> with the full response, not a stream.

import 'dart:io';
import 'package:dartantic_ai/dartantic_ai.dart';

void main() async {
  final agent = Agent('openai:gpt-4o');
  final stream = agent.runStream('Tell me a short story about a brave robot.');
  await for (final response in stream) {
    stdout.write(response.output);
  }
}

Provider Switching #

dartantic_ai supports seamless switching between OpenAI and Gemini providers within a single conversation. You can alternate between providers (e.g., OpenAI → Gemini → OpenAI) and the message history—including tool calls and tool results—remains compatible and threaded correctly. This enables robust multi-provider workflows, such as starting a conversation with one provider and continuing it with another, or leveraging provider-specific strengths in a single chat.

  • Message history is serialized and deserialized in a provider-agnostic way.
  • Tool call and result IDs are stable and compatible across providers.
  • Integration tests verify that tool calls and results are preserved and threaded correctly when switching providers.

This feature allows you to build advanced, resilient LLM applications that can leverage multiple providers transparently.

Example: Switching Providers in a Conversation #

import 'package:dartantic_ai/dartantic_ai.dart';

void main() async {
  final openaiAgent = Agent.provider(OpenAiProvider(), systemPrompt: 'You are a helpful assistant.');
  final geminiAgent = Agent.provider(GeminiProvider(), systemPrompt: 'You are a helpful assistant.');

  // Start conversation with OpenAI
  var response = await openaiAgent.run('What animal says "moo"?');
  print('OpenAI: ${response.output}'); // cow
  var history = response.messages;

  // Continue conversation with Gemini
  response = await geminiAgent.run('What animal says "quack"?', messages: history);
  print('Gemini: ${response.output}'); // duck
  history = response.messages;

  // Store some info with OpenAI
  response = await openaiAgent.run('My favorite animal is the platypus.', messages: history);
  print('OpenAI: ${response.output}'); // I like platypuses, too!
  history = response.messages;

  // Retrieve info with Gemini
  response = await geminiAgent.run('What animal did I say I liked?', messages: history);
  print('Gemini: ${response.output}'); // platypus
}
34
likes
0
points
628
downloads

Publisher

verified publishersellsbrothers.com

Weekly Downloads

A Dart library for easily interacting with LLMs in a typed manner.

Repository (GitHub)
View/report issues

License

unknown (license)

Dependencies

dotprompt_dart, google_generative_ai, json_schema, openai_dart, uuid

More

Packages that depend on dartantic_ai