ml_metrics 0.1.0
ml_metrics: ^0.1.0 copied to clipboard
A lightweight and easy-to-use Dart library for evaluating machine learning models. Includes accuracy, precision, recall, F1 score, and confusion matrix for binary classification.
π ml_metrics #
A lightweight and efficient Dart library for evaluating machine learning models.
Supports binary classification metrics such as Accuracy, Precision, Recall, F1 Score, and Confusion Matrix.
β¨ Features #
- β Accuracy score
- β Precision & Recall (binary classification)
- β F1 Score
- β Confusion Matrix
- β Fully tested & null-safe
π¦ Installation #
Add the following to your pubspec.yaml
:
dependencies:
ml_metrics: ^0.1.0
Then run:
dart pub get
π Quick Example #
import 'package:ml_metrics/ml_metrics.dart';
void main() {
final yTrue = [1, 0, 1, 1, 0];
final yPred = [1, 0, 0, 1, 1];
print('Accuracy: ${accuracy(yTrue, yPred)}');
print('Precision: ${precision(yTrue, yPred)}');
print('Recall: ${recall(yTrue, yPred)}');
print('F1 Score: ${f1Score(yTrue, yPred)}');
print('Confusion Matrix: ${binaryConfusionMatrix(yTrue, yPred)}');
}
π Metrics Reference #
Metric | Description |
---|---|
accuracy |
Ratio of correct predictions |
precision |
TP / (TP + FP) |
recall |
TP / (TP + FN) |
f1Score |
Harmonic mean of precision and recall |
binaryConfusionMatrix |
Returns [TP, FP, FN, TN] as a list |
π§ͺ Run Tests #
dart test
π Links #
π License #
This project is licensed under the MIT License. See the LICENSE file for details.