modeloffaced 1.0.0+8
modeloffaced: ^1.0.0+8 copied to clipboard
A Flutter face recognition app that captures multiple face poses before saving users.
modeloffaced #
A Flutter package for live face detection and recognition.
Getting Started #
This package allows you to:
- Detect live face embeddings from camera input.
- Store embeddings and related images in a local database.
- Compare detected embeddings with existing users.
- Display similarity scores and matched user details.
Basic Usage #
Create a main.dart
file in your Flutter app as follows:
import 'package:flutter/material.dart';
import 'package:modeloffaced/home_page.dart';
void main() async {
WidgetsFlutterBinding.ensureInitialized();
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Face Detection',
debugShowCheckedModeBanner: false,
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: const HomePage(),
);
}
}
Important: Update Asset Paths
To correctly load images and the TFLite model, update the asset paths in the AssetsUtil class as below:
class AssetsUtil{
static String HEAD_DOWN_IMAGE = "packages/modeloffaced/assets/images/head_down.png";
static String HEAD_UP_IMAGE = "packages/modeloffaced/assets/images/head_up.png";
static String HEAD_LEFT_IMAGE = "packages/modeloffaced/assets/images/head_left.png";
static String HEAD_RIGHT_IMAGE = "packages/modeloffaced/assets/images/head_right.png";
static String HEAD_STRAIGHT_IMAGE = "packages/modeloffaced/assets/images/head_straight.png";
static String FACE_MODLE_512 = "packages/modeloffaced/assets/face_net_512.tflite";
}