π ml_metrics
A lightweight and efficient Dart library for evaluating machine learning models.
Supports binary classification metrics such as Accuracy, Precision, Recall, F1 Score, and Confusion Matrix.
β¨ Features
- β Accuracy score
- β Precision & Recall (binary classification)
- β F1 Score
- β Confusion Matrix
- β Fully tested & null-safe
π¦ Installation
Add the following to your pubspec.yaml
:
dependencies:
ml_metrics: ^0.1.0
Then run:
dart pub get
π Quick Example
import 'package:ml_metrics/ml_metrics.dart';
void main() {
final yTrue = [1, 0, 1, 1, 0];
final yPred = [1, 0, 0, 1, 1];
print('Accuracy: ${accuracy(yTrue, yPred)}');
print('Precision: ${precision(yTrue, yPred)}');
print('Recall: ${recall(yTrue, yPred)}');
print('F1 Score: ${f1Score(yTrue, yPred)}');
print('Confusion Matrix: ${binaryConfusionMatrix(yTrue, yPred)}');
}
π Metrics Reference
Metric | Description |
---|---|
accuracy |
Ratio of correct predictions |
precision |
TP / (TP + FP) |
recall |
TP / (TP + FN) |
f1Score |
Harmonic mean of precision and recall |
binaryConfusionMatrix |
Returns TP, FP, FN, TN as a list |
π§ͺ Run Tests
dart test
π Links
π License
This project is licensed under the MIT License. See the LICENSE file for details.