DataFrameMath extension

on

Methods

anova(String groupCol, String valueCol) ANOVAResult

Available on DataFrame, provided by the DataFrameMath extension

One-way ANOVA comparing means across multiple groups.
autocorrelation(int columnIndex, int maxLag) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes autocorrelation up to a specified lag.
bootstrap({required String valueCol, required double statistic(List<double>), int nBoot = 1000}) BootstrapResult

Available on DataFrame, provided by the DataFrameMath extension

Bootstrapped sampling distribution of a user-defined statistic.
chiSquare(String colX, String colY) ChiSquareResult

Available on DataFrame, provided by the DataFrameMath extension

Chi-Square test (Pearson) for independence between two categorical columns.
convolve(String xCol, String yCol) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes the discrete linear convolution of two columns.
countNulls(dynamic colName) int

Available on DataFrame, provided by the DataFrameMath extension

Counts the number of null or NaN values in the specified column.
countZeros(dynamic colName, {List<Object> zeroValues = const <Object>[0]}) int

Available on DataFrame, provided by the DataFrameMath extension

Counts the number of zero values in a specified column.
covarianceMatrix(List<String> cols) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Covariance matrix for a list of columns (population).
crossCorrelate(String xCol, String yCol) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes the discrete cross-correlation of two columns.
ewmCorr(int columnIndexX, int columnIndexY, double alpha) List<double>

Available on DataFrame, provided by the DataFrameMath extension

EWM correlation between two columns.
ewmCov(int columnIndexX, int columnIndexY, double alpha, {bool useLaggedMean = false}) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Exponential Weighted Moving Covariance (EWMCov) between two columns.
ewmMean(int columnIndex, double alpha) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the exponentially weighted moving average (EWM) for a column. The alpha parameter is the smoothing factor and must be in the range (0, 1].
ewmVar(int columnIndex, double alpha) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the exponentially weighted moving variance for a column (population). The alpha parameter is the smoothing factor and must be in the range (0, 1].
expandingMax(int columnIndex) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the expanding maximum for a column.
expandingMean(int columnIndex) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the expanding mean for a column.
expandingMin(int columnIndex) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the expanding minimum for a column.
expandingVar(int columnIndex, {int ddof = 1}) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the expanding variance for a column. The ddof parameter determines the type of variance: 0 for population, 1 for sample.
exponentialSmoothing(String valueCol, int period, {String method = 'hw', double alpha = 0.2, double beta = 0.1, double gamma = 0.1, String seasonalType = 'additive'}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Applies single, double, or triple exponential smoothing to a series.
fft(String timeCol, String valueCol) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes the discrete Fourier transform (DFT) of a numeric column using FFT logic.
filterNulls(dynamic columnIndex, {bool skipNull = true}) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Filters out null and NaN values from a specified column and returns a list of doubles.
groupBy(String byColName, {String? valueColName, double transform(List<double>)?, bool filter(List<double>)?, double aggregate(List<double>)?}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

GroupBy with transform, filter, or aggregate.
interpolate(String timeCol, String colName, {InpMethod method = InpMethod.polynomial, int degree = 3, int? precision}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Interpolates missing values in a column using time-aware or index-based methods.
knnImputer({required List<String> featureCols, required List<String> targetCols, int k = 5}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

K-Nearest Neighbors (KNN) imputation for missing values.
localOutlierFactor({List<String>? cols, int k = 20}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes Local Outlier Factor (LOF) scores for multivariate outlier detection.
m(dynamic colName, double operation(num), {bool asList = false, bool inplace = false}) → dynamic

Available on DataFrame, provided by the DataFrameMath extension

Applies a mathematical function to all elements in a column.
max(int columnIndex) double

Available on DataFrame, provided by the DataFrameMath extension

Returns the maximum value in a specified column.
mean(int columnIndex) double

Available on DataFrame, provided by the DataFrameMath extension

Calculates the mean (average) of the values in a specified column.
melt(List<String> idVars, List<String> valueVars, {String varName = 'variable', String valueName = 'value'}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Converts wide-form data to long-form.
min(int columnIndex) double

Available on DataFrame, provided by the DataFrameMath extension

Returns the minimum value in a specified column.
outlierIQR(String valueCol, {double k = 1.5}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Flags outliers using the interquartile range (IQR) method.
outlierZScore(String valueCol, {double threshold = 3.0}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Flags outliers using the Z-score method.
partialAutocorrelation(int columnIndex, int maxLag) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes partial autocorrelation using the Durbin–Levinson algorithm.
pca({List<String>? cols, bool center = true, bool scale = false}) PCAModel

Available on DataFrame, provided by the DataFrameMath extension

Principal Component Analysis (PCA) on a group of columns.
pivotTable({required String indexCol, required String columnCol, required String valueCol, double agg(List<double>)?}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Dynamic pivot table for reshaping data.
resample(String timeCol, String valueCol, Duration freq, {double agg(List<double>)?, String interpolation = 'linear'}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Resamples a time series by upsampling or downsampling with optional interpolation.
rollingApply(int columnIndex, int window, double func(List<double>)) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Apply a custom function over each fixed-size window.
rollingMad(String valueCol, int window) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes the rolling median absolute deviation (MAD) for a numeric column.
rollingMean(int columnIndex, int window) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Rolling mean (average) over a fixed-size window.
rollingStd(int columnIndex, int window) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Rolling standard deviation (population std) over a fixed-size window.
rollingSum(int columnIndex, int window) List<double>

Available on DataFrame, provided by the DataFrameMath extension

Computes the rolling sum over a fixed-size window on a numeric column.
seasonalDecompose(int columnIndex, int period) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Classical seasonal-trend decomposition using an additive model.
sumCol(int columnIndex) double

Available on DataFrame, provided by the DataFrameMath extension

Sums the values in a specified column.
svd({List<String>? cols, int sweeps = 100}) SVDResult

Available on DataFrame, provided by the DataFrameMath extension

Singular Value Decomposition (SVD) on a group of columns.
tTest(String groupCol, String valueCol) TTestResult

Available on DataFrame, provided by the DataFrameMath extension

Two-sample t-test comparing means between two groups.
unstack({required String indexCol, required String varName, required String valueName}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Converts long-form data back to wide-form (unstack).
weightedHistogram(String valueCol, String weightCol, {int? bins}) DataFrame

Available on DataFrame, provided by the DataFrameMath extension

Computes a weighted histogram of a column using another column as weights (Freedman–Diaconis).